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ON THE ASYMPTOTIC THEORY OF THE THREE-DIVISIONAL FLOW OF A 
HYPERSONIC STREAM OF ~IATIN~ GAS AROUND A BODY* 

V.N. GOLUHKIN 

The three-dimensional flow of a hyersonic stream of ideal gas round bodies 
of arbitrary thickness allowing for radiation at high temperatures is 
investigated using the method of a thin optically transparent shock layer, 
which is a generalization of the well-known metbod of a thin shock (boundary) 

layer /l/. Using the fundamental property of the gas in the thin shock 
layer, which expresses the conservation of the ratio of the stream compon- 
ent of vorticity along streamlines to the density of the gas /2,3/, an 
analytic solution is obtained of the non-linearprobfemof the flow round 
a body bounded by a surface of zero total curvature. The distribution of 
the radiation heat flux to the body is determined. The effectofradiation 
on the flow of gas is considered, as an example, in the neighbourhood of 
the plane of qumetry of a conical body at the angle of attack. 

The flow of a hypersonic stream of radiating gas round a body for the plane and axisym- 
metric cases has been studied in numerous papers {see /4,.5/ and the bibliography there). 
Recently the first results of a numerical calculation of the three-dimensional hypersonic flow 
of a selectively radiating gas mixture over a blunted body were obtained in /6/. Two-dimen- 
sional flew round bodies was considered in /7,8/ using the method of a thin shock layer /l/. 
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1. Using the method of a thin shock layer consider the three-dimensional flow or a 
hypersonic stream round a body, when the temperature of the gas downstream of the bow shock 
is high, and it is necessary to take into account the effect of radiation on the flow pattern 
and the gas dynamic functions. The gas downstream of the shock is considered to be stableand 
the optical thickness of the shock layer &between the shock and the body is assumed to be 
small, i.e. d, -dlL,< l(d and L?a.re, respectively, the characteristic thickness of the shock 
layer and the mean free path of the radiation). We will use a curvilinear orthogonal system 
of coordinates hc attached to the body, in which surfaces parallel to the body surface 
act as one set of coordinate surfaces , and the other two are developable surfaces formed by 
the normals to the body surface along the lines of curvature. Let t,c be the parameters of 
the lines of curvature andqthe distance from the body along the external normal n. The Lam& 
parameters have the form 

H8= I/g;;1 --xl@, I&,== 1, XC= fg(l --zrl) (1.1) 

where g,,, gee are the coefficients of the first basic quadratic form, and K,and & are the 
principal curvatures. We will represent the body surfaces and the compression shock by the 
equations 

r=4{E,5), r,=rb(~,r)+~(E,Cfn 

We will introduce the following nbtation: U,Y,W are components of the velocity vector 
Pin the directions E, q, t;, p is the pressure of the gas, p is the density, T is the temper- 
ature, h is the enthalpy, p is the molecular weight, x* is the effective adiabatic exponent 
of the equilibrium gas, a is Stefan's constent, and k,(p, T) is the mean Planck absorption 
coefficient over a fairly wide range of pressures and temperatures, which is represented by 
the analytic formula /7/ 

k, fp, T) = apT”, a, n = const (1.2) 

Since in hypersonic flow the Mach numberofthe oncoming stream is M,>1 and the effect- 
ive adiabatic exponent (x* - 1)<1, then, taking into account the characteristic values of the 
pressure and enthalpy downstream of the shock, we define the small parameter e that chacter- 
izes the ratio of the densities of the compression jump and the thickness of the shock layer 
by the relations 

e=+<a, x=x*(p,V,? +-I/2) 

The characteristic ratio of the temperatures at the shock is determined by the product 
m = e&f,". It follows from the energy equation that the effect of radiation is important 

when m>i. Thus 
d=eL, dr=eLkp*, Lk,+ = La~“aV,~T:rn~ 3 lm” 

where L is the characteristicdimensionof the body. The condition that the shock layer is 

optically thin (transparent) has the form 

d,=lsmn+O as e-+O,m-+oo (1.3) 

2. The use of the method of a thin optically transparent shock layer to solve the gas- 
dynamic equations taking radiation into account involves passing to limit e-+O,M,-+m, 

m+oe,d,+O. We will introduce the following independent variables of order unity: 

F = g/L, q” = $eL, 5” = c/L 12.11 

and expansions of the unknown functions 

u/V, =u13~o,10,54-t-..~~ v/V, = evl @, q”, 5”) + . . . (2.2) 

w/v, =r u*(F,rl”,5”)-t...~ P=Pa.+pcJ,2po~0,r10,50) +... 
Zh/V,* = ho (E’, q”, g? -t- . . . , p/p.. = e-“po (r, q”, %) f . . . 

T/T,=mTo~,q*,TP)-+..., 2q,/p,V,'=q&Dtni-... 

x,(p,~1=i+ZeA(po,he)+..., p/&+=pof... 

S/L = es, (F, p) + . . . 

where q,is the radiation heat flux on the surface. 
Substituting (l.l), (1.2), (2-l), and (2.2) into the equations of radiation gas-dynamics 

in the approximation of an optically transparent layer Of gas /4,5/, assuming, using (1.3) I 
m =Of(lyg~l(*+4) and equating terms of like powers of e, we obtain in the basic approximation 

the following equations: 

JGzGDUi-W[U(i/&-- (_rrGJel=~ (2.3) 

p(K@ i-K&)= -_A (2.4) 
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(2.5) 

(PU I/i& + lGG(P4l+ (PW lG& = 0 
pDh + ,p,+, = 0 
P = $A (P, h), PP = PT 

(2.6) 

(2.7) 

(2.8) 

r = @.,m' = 0 (i), y = 8~2',"/(p,V~~) 

where the superscripts are omitted and coordinate symbols in subscripts denote partial 

derivatives, D is the differentiation operator along streamlines, and r is a parameter 
characterizing the effect of radiation on the gas flow. 

below, we use the fact that, when T>, 10 4 "K the quantity x+ is virtually constant 191, 
and we assume A = 1; the constant p+< 1 which is determined by the equilibrium state of 
the gas is assumed constant. At the compression shock, when q = S(E,c)P, we have, from /2, 

3/, the conditions 
u‘=em.rl, w,=%'Tz (2.9) 

va=u,s~/~z +u~,S,/~~- Ul 

p.=h,svla, pa= 1, T,=pv,? 

h = @b)t* h = @b)E, vl=em-n, e,=V,/V,) 

On the surface of the body the condition of impermeability must be satisfied 

nb = 0 (2.10) 

Since the shock layer is thin and the derivatives along the layer are small composed with 
the derivatives normal to it, we use, when the radiation propagation is taken into account, 
the widely used /5,7,0/ approximation of a locally one-dimensional plane layer. Then, in- 
tegrating across the vector divergence layer of the radiation heat flux, and using (1.2) and 
(2.21, We obtain the following expression for the radiation heat flux reaching the body 

Note that in agreement with the general result /2,3/ the flow of radiating gas in the 
shock layer has the property of conserving along the streamlines the ratio of the stream 
vorticity component to the gas density. This property follows from Eqs.CZ.31, (2.51, and 
(2.6) which hold for any arbitrary flow in the thin shock layer irrespective of the physico- 
chemical processes taking plane in it (equilibrium,non-equilibrium,chemical reactions, dis- 
sociation, ionization, and radiation), and is expressed by the equation 

D [u* (w/u)&1 = 0 (2.11) 

3. Let us consider the flow of radiating gas over a body with a developed surface form, 
whose total curvature is K,K, = 0 (for instance, suppose K1 =0 ). As the coordinates E,G 
we select the dimensionless length of the arc along the curvature lines, and obtain g,, = g,, = 

17 g1, = 0. Note that such surfaces may be used to construct bodies of optimal aerodynamic 
form /lo/. Instead of the equation of continuity we use Eq.(2.11). Then instead of Eqs.(2.3) 
-_(2.6) we obtain 

Du =O, Dw = 0, D [(w&/p 1 = 0 (3.1) 

(3.2) 

To obtain a general solution of system (3.11, (3.21, (2.71, and (2.8) we change, as in 
/2,3/, to new variables E,$,e, where $(&,q, 6),8(e,n, 0 are constants along streamlines, de- 
fined by the equations 

dyu = dnlv = duw (3.3) 

From (3.11, (3.3), (2.81, and (2.7) we obtain 

u = u ($9 Q), w = W(% % t, -N (V, W + 2 (9, e) (3.4) 

%+'v + 'A,&= PQ-W. e) (3.5) 

(n + 4)U(V, @)I$ + Kh”+s = 0 (3.6) 

(K =(n + 4) p"+T, N = WIU) 
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where Kis the similarity parameter that takes radiation into 
arbitrary functions. 

Taking into account the conditions at the shock h = h,, 
of Eq.(3.6) has the form 

account,and U, W, 2, 62 are 

when F, = ~(9, e), the solution 

h = h. (1 + Kh?’ R - x ($,8) J/U &I, O))-“fMJ) (3.7) 

Then aSsum.bg, as in /2,3/, rp - WiU, 8 =Z, writing (3.2), (3.31, and (3.5) in the 
veriables E,9, 6 -*E + 0, and integrating, taking (2.9) and (2.10) into account, we obtain 

P&'#P,~)==A~,G)-& 
d 
* w'W,5-@QQWg',6 --fl)c# (3.8) 

18 .f) 
P-p/h 

5 

(3.9) 

v&%5)= '('p* 5 - N)[ ['+G-(h f %#$] @'- 61,&P& + tp (+tb)&b (3.10) 

Wf)-t "(P.I--'#W$.W.)W 
(3.11) 

The abscissa of the point of entry x(1,?.) of the streamline into the shock layer is 
the root of the functional equation 

t4 = ur, (Xt YX + Wu.(II, %z -t-J+) 
The functions F = {u,w,ba}, which are constant along the streamlines in the flow field, 

are expressed by their values at the shock 

p (S, 5.-W = f.(x,r), x = X 0P, t -W, 'I; = 6 "t9 (X -E) 

and, as in /2,3/, P. = -[YK,(t, c)1”‘. 
Thus, in the basic approximation of the method of a thin optically transparent shock 

layer we have obtained an analytic solution of the problem of the flow over a body of a radiat- 
ing hypersonic flow of gas. Formulas (3.4) and (3.7)-(3.11) show that in the basic (Newtonian) 
approximation the radiation does not affect the pressure distribution and the tangential 
velocity components, but in calculating the density, the vertical velocity component and the 
three-dimensional shock layer thickness it is necessary to take radiation into account. These 
properties were established earlier for plane and axisysmWA.c flows in the shock layer /5, 
7,W. 

Changing to the new independent variables 6,~. 5% we transform the formulas for the shock 
layer thickness and the radiation heat flux to the final form 

4. Generally, calculating the flow using the above formulas involves certain mathematical 
difficulties due to the complicated functional relations. As an example, consider the flow 
in the neighbourhood of the plane of symmetry on the windward side of a conical body at an 
angle of attack 01. Suppose that in the Cartesian system of coordinates xyz with unit vectors 
i,j,k the plane of symmetry corresponds to g=z=O, and the equation of the section of the 
body by that plane is fi =ttgcp. The principal radii of curvature of the surface in the plane 
f=Qare 

R3= ;w;‘=co, R,=A7;=R&tgqseocp, F=zseo(p 

In the neighbourhood of the plane of sFetry we have 

(4.1) 

which is accurate to terms of order f". Taking into account (4.1) and (2.9) we obtain from 
formulas (3.12) the dependence of the compressed layer thickness and the heat flux from the 
universal coordinate 

&(x) = tg (9 + af ? 
K s (If x - Xf-“(ncl’ 

(l-c)X+CX 
x&t 

0 

(4.2) 



x 
e.(X)= i 

2b+4) s 

(* + x _ x)-w6vw) x dX 
(i-C)XfCX 

(~=~lt~(~+~~)lg~, X=Kfsin*(~)(cp+cr)sec(~+a)) 
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(4.3) 

where c is a parameter. The integrals (4.2) and (4.3) are convergent, since their integrands 

have singularities outside the region of integration. 
In a number of cases formulas (4.2) and (4.3) convert to results obtained earlier by 

methods applicable only to flows of special form. Thus when E= O,& -1 we obtain a formula 

for the angle of inclination of the attached shock on the windward side of a circular cone at 
the angle of attack (without radiation) 

e+=(p+X-tg((P+")[(i+t)ln(i+l)-;l] 
x+1 F 

t= sm a 
sing,cos(p+a) 

(4.4) 

which is the same as the result in /ll/ for M,= co. When e=O. C=O(Ro=c-) and C-i (R,=l) 

formulas (4.2) and (4.3) yield S, and p,,, corresponding to the flow over a wedge and cone of a 
hypersonic stream of radiating gas. 

The results presented in this paper relate to the investigation of essentially three- 
dimensional effects in a,hypersonic flow of radiating gas. Radiation leads, unlike (4.4), to 

distortion of the bow compression shock, and the field of flow over a conical bodynolonger 
has conical properties, and must be investigated using three-dimensional equations. It follows 
from (4.2) and (4.3) that the upper estimate of the radiation effect corresponds to n== 0. 

Curves of the function lI(X)=X&(X) .ctg(cp+a) (the con- 
ed tinuous lines) and go(X)(the dashed lines) are shown for 

this case in Fig.1, where the parameter c has values of 
0, 0.1, 0.5, and 1, relating to curves 1, 2, 3, and 4. 

0.2 These data indicate that a reduction in the radius of 
curvature of the body cross section for fixed ~,a or 
an increase in the angle of attack for constant So, 0 

0.1 
results in a reduction in the shock-layer thickness and 
in the radiation heat flux to the surface. 

0 
5 X IO 

Fig.1 
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